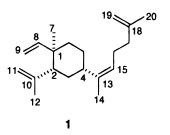
A Cytotoxic Lobane Diterpene from the Formosan Soft Coral *Sinularia inelegans*


Min-Chi Chai,[†] Shang-Kwei Wang,[‡] Chang-Feng Dai,[§] and Chang-Yih Duh^{*,†}

Department of Marine Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, Department of Microbiology, Kaohsiung Medical College, Kaohsiung, Taiwan, and Institute of Oceanography, National Taiwan University, Taipei, Taiwan, Republic of China

Received October 29, 1999

A new cytotoxic lobane diterpene, ineleganene (1), was isolated from the Formosan soft coral *Sinularia inelegans*. The structure of compound 1 was determined by 1D and 2D spectral analysis.

In the search for bioactive substances from marine organisms, the soft coral *Sinularia inelegans* Tixier-Durivault (family Alcyoniidae) was studied because the hexane extracts showed significant cytotoxicity in A549 (human lung adenocarcinoma) and P-388 (mouse lymphocytic leukemia) cell cultures as determined by standard procedures.^{1,2} Bioassay-guided fractionations resulted in the isolation of a new cytotoxic lobane diterpene, ineleganene (1).

The hexane-soluble fraction of S. inelegans was chromatographed over Si gel to give a colorless oil, $[\alpha]^{25}$ +9.6° (c 0.1, CHCl₃). HRFABMS and the DEPT spectrum of 1 established the molecular formula to be C₂₀H₃₂. Thus, 5 degrees of unsaturation were determined for 1. ¹H and ¹³C NMR spectral data (Table 1) showed that the structure of **1** contained four olefin groups, including a vinyl ($\delta_{\rm C}$ 150.4, d, C-8; 109.8, t, C-9; $\delta_{\rm H}$ 5.82, dd, J = 17.7, 10.2 Hz, H-8; 4.88 d, J = 10.2 Hz, 4.91 d, J = 17.7 Hz, H₂-9), an isopropenyl group ($\delta_{\rm C}$ 147.8, s, C-10; 112.1, t, C-11, 24.7, q, C-12; $\delta_{\rm H}$ 4.59, br s, 4.82, br s, H₂-11; 1.71, s, H₃-12), a methyl-bearing trisubstituted double bond ($\delta_{\rm C}$ 131.6, s, C-13; 124.3, d, C-15; 25.6, q, C-14; δ_H 5.13, m, H-15; 1.69, s, H₃-14), and an isopentenyl group ($\delta_{\rm C}$ 107.1, t, C-19; 154.5, s, C-18; 17.7, q, C-20; 34.9, t, C-17; 27.3, t, C-16; $\delta_{\rm H}$ 4.74 br s, 4.79 br s, H₂-19; 1.62, s, H₃-20; 2.13, m, H₂-16; 2.08, m, H_2 -17). These facts, in combination with the molecular formula, suggested the occurrence of one ring. The presence of the vinyl and isopropenyl groups together with a tertiary methyl group ($\delta_{\rm C}$ 16.6, q, C-7; $\delta_{\rm H}$ 1.01, s, H₃-7) is reminiscent of a 3-isopropenyl-4-methyl-4-vinylcyclohexane-1-yl moiety that is reported in lobane-type diterpenoids, $^{\rm 3-5}$ and this partial structure was confirmed by COSY, HMQC, and HMBC spectra. Further, the trisubstituted olefin and the isopentenyl groups were connected by HMBC and NOESY

Г	able	1.	NMR	Data	of	1 <i>a</i>
	anc		TATATIC	Data	UL.	

Table 1. NMR Data of 1 ^a								
position	δ_{H} ; mult. J^{b}	$\delta_{\rm C}$; mult. ^c	HMBC	COSY	NOESY			
1		40.4; s						
2	2.01; dd;	52.9; d	3, 6, 7, 10,		11			
	12.1, 5.0		11, 12					
3α	1.51; m	33.4; t	4, 5, 13	4	7			
β	1.58; m							
4	1.92; m	44.5; d	6, 14	3				
5	2.14; m	26.8; t		6				
6	1.46; m	39.8; t	1, 2, 4, 7	5	8			
7	1.01; s	16.6; q	2, 6, 8		3α, 9, 11,			
					12, 14			
8	5.82; dd;	150.4; d	6, 7	9	6, 9			
	17.7,10.2							
9	4.88; d, 10.2	109.8; t	1, 8	8	7, 8			
	4.91; d; 17.7							
10		147.8; s						
11	4.59; br s	112.1; t	2, 12	12	2, 3, 7			
	4.82; br s							
12	1.71; s	24.7; q	2, 10, 11	11	7			
13		131.6; s						
14	1.69; s	25.6; q	13, 15		3α, 15			
15	5.13; m	124.3; d	13	16	14, 16			
16	2.13; m	27.3; t	15	15, 17	3α, 15			
17	2.08; m	34.9; t	16, 18,	16	19			
			19, 20					
18		154.5; s						
19	4.74; br s	107.1; t	17, 18		17			
	4.79; br s							
20	1.62; s	17.7; q	18					

^{*a*} Spectra recorded in CDCl₃. ^{*b*}J values in Hz. ^{*c*}Multiplicity deduced by DEPT and indicated by usual symbols.

correlations to form a 1,5-dimethyl-1(*E*),5-hexadiene-1-yl side chain, which was attached at the α (equatorial) position of C-4. Compound **1** exhibited cytotoxicity against A549 and P-388 cell lines with GI₅₀ values of 3.63 and 0.20 μ g/mL, respectively.

Experimental Section

General Experimental Procedures. Optical rotation was determined on a JASCO DIP-181 polarimeter. The IR spectrum was recorded on a Hitachi 26-30 spectrophotometer. ¹H and ¹³C NMR spectra were recorded with a Bruker AMX 400 NMR spectrometer at 400 and 100.6 MHz, respectively, in CDCl₃ using TMS as internal standard. The HMBC experiment was obtained using HMBC (optimized for ⁿ*J*_{C-H} = 8 Hz) pulse sequences with a pulse gradient. EIMS spectra were obtained with a JEOL JMS-SX/SX 102A mass spectrometer at 70 ev. Si gel 60 (Merck, 230–400 mesh) was used for column chromatography; precoated Si gel plates (Merck, Kieselgel 60 F₂₅₄, 0.25 mm) were used for TLC analysis.

10.1021/np990539e CCC: \$19.00 © 2000 American Chemical Society and American Society of Pharmacognosy Published on Web 04/29/2000

^{*} To whom correspondence should be addressed. Tel.: 886-7-525-2000, ext. 5036. Fax: 886-7-525-5020.

[†] National Sun Yat-sen University.

[‡] Kaohsiung Medical College.

[§] National Taiwan University.

Animal Material. The soft coral *S. inelegans* was collected at Green Island off Taiwan in September 1997, at a depth of 12 m and was stored for 1 day in a freezer until extraction. A voucher specimen NSUGN-1024 (identified by Prof. Chang-Feng Dai) was deposited in the Department of Marine Resources, National Sun Yat-sen University, Taiwan.

Extraction and Isolation. *S. inelegans* specimens (wet wt 2.1 kg) were freeze-dried to give 980 g of a solid, which was extracted with CH_2Cl_2 (2 L × 3). After removal of solvent in vacuo, the residue (40 g) was partitioned between CH_2Cl_2 and H_2O . The CH_2Cl_2 -soluble fraction was further partitioned between *n*-hexane and 10% aqueous MeOH. The *n*-hexane-soluble fraction was chromatographed over Si gel 60 using *n*-hexane and *n*-hexanes–EtOAc mixtures (the final ratio, 1:3) of increasing polarity. Elution by *n*-hexane afforded fractions containing **1**. Compound **1** was finally purified by Sephadex LH-20 chromatography using *n*-heptane as eluting solvent.

Ineleganene (1): colorless oil (7 mg); $[\alpha]^{25}_{D}$ +9.6° (*c* 0.10, CHCl₃); IR (KBr) ν_{max} 3090, 2925, 1637 cm⁻¹; ¹H and ¹³C NMR, see Table 1; EIMS *m*/*z* 272 [M]⁺ (0.3), 258 (0.3), 244 (0.2), 230 (1), 216 (0.4), 147 (11), 133 (15), 121 (19), 41 (100); HREIMS *m*/*z* 272.2496 (calcd for C₂₀H₃₂, 272.2498).

Cytotoxicity Testing. P-388 cells were supplied by Prof. J. M. Pezzuto, University of Illinois at Chicago; A549 and HT-29 were purchased from the American Type Culture Collection. Cytotoxicity asssays were carried out according to the procedure described previously.⁶

Acknowledgment. We thank Prof. J. M. Pezzuto, Program for Collaborative Research in Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, for the provision of P-388 line. This work was supported by a grant from the National Science Council of Taiwan (NSC-89-2314-B-110-002) awarded to C.-Y.D.

References and Notes

- Geran, R. I.; Greenberg, N. H.; MacDonald, M. M.; A. M. Schumacher, A. M.; Abbott, B. J. Cancer Chemother. Rep. 1972, 3, 1–91.
- (2) Hou, R.-S.; Duh, C.-Y.; Chiang, M. Y.; Lin, C.-N. *J. Nat. Prod.* **1995**, *58*, 1126–1130.
- (3) Edrada, R. A.; Proksh, P.; Wray, V.; Witte, L.; van Ofwegen, L. J. Nat. Prod. 1998, 61, 358-361.
- (4) Raju, B. L.; Subbaraju, G. V.; Rao, C. B.; Trimurtulu, G. J. Nat. Prod. 1993, 56, 961–966.
- (5) Dunhop, W. W.; Wells, R. J. J. Aust. J. Chem. **1979**, 32, 1345–1351.
 (6) Duh, C.-Y.; Wang, S.-K.; Weng, Y.-L.; Chiang, M. Y.; Dai, C.-F. J. Nat. Prod. **1999**, 62, 1518–1521.

NP990539E